US009195460B1

a2z United States Patent (10) Patent No.: US 9,195,460 B1
Glanville et al. 45) Date of Patent: Nov. 24, 2015
(54) USING CONDITION CODES IN THE 7242414 B1* 7/2007 Thekkath etal. 345/623
PRESENCE OF NON-NUMERIC VALUES 2003/0005013 Al* 1/2003 Steele, Ir. 708/495
2003/0115577 Al* 6/2003 Garvey ... 717/136
(75) Inventors: Robert Steven Glanville, Cupertino, CA
(US); John Erik Lindholm, Saratoga, OTHER PUBLICATIONS
CA (US); Ming Y. Siu, Santa Clara, CA) .))) o
(US) Gosling et al, “Java Language Specifications, Third edition”, JVM
Specifications, chp. 4, 15, May 2005 <javaspec-3__ch4&15.pdf>*
(73) Assignee: NVIDIA CORPORATION, Santa Gosling et al, “Java Language Specifications, Third edition”, JVM
Clara, CA (US) Specifications, chp. 14, May 2005, 50 pg <Gosling_ chpl14.pdf>.*
Eggers, et al. “Simultaneous Multithreading: A Platform for Next-
(*) Notice: Subject to any disclaimer, the term of this Generation Processors,” IEEE Micro, vol. 17, No. 5, pp. 12-19,
patent is extended or adjusted under 35 Sep.-Oct. 1997.
U.S.C. 154(b) by 1830 days. # cited by examiner
(21) Appl. No.: 11/415,781
(22) Filed: May 2, 2006 Primary Examiner — Tuan Vu
’ (74) Attorney, Agent, or Firm — Artegis Law Group, LLP
(51) Imt.ClL
GO6F 9/45 (2006.01)
GOGF 9/30 (2006.01) (7 ABSTRACT
(52) US.CL Systems and methods for compiling programs using condi-
CPC i GO6F 9/30094 (2013.01) tion codes and executing those programs when non-numeric
(58) Field of Classification Search values are present allow for explicit handling of non-numeric
USPC ..o 717/136, 140; 712/220-222, 14, 24, values. In addition to the conventional condition code values
712/208, 234, 244; 708/495-498, 505, 551, of'positive, negative, and zero, a fourth value may be encoded,
708/506; 714/25; 711/173; 345/623 not a number (NaN) representing a non-numeric value. New
1 ORI GO6F 9/30007,9/30021, 7/483, 9/30094 condition tests are defined that explicitly account for condi-
See application file for complete search history. tion code values of NaN. A compiler may produce code using
. the new condition tests to represent if and if-else statements.
(56) References Cited The code including the new condition tests generates deter-

U.S. PATENT DOCUMENTS

5,193,157 A * 3/1993 Barbouretal. 712/234
6,789,098 B1* 9/2004 Dijkstraccceooeinine 708/495
7,117,342 B2* 10/2006 Tremblay etal. 712/208

ministic results during execution when non-numeric values
are present.

18 Claims, 7 Drawing Sheets

Detect “if"
Detect *if” 100
100 l
l Insert
Insert comparison
comparison l
l Invert the if
nsert BRANCH t condition test
nse 0 ;
if code for if 140
condition test
Insert BRANCH to
v ELSE for the
inverted if
condition test
160
@ X Insert else code N l
Insert BRANCH to .
" DONE for the Insert if code
inverted if
Insert BRANCH to condition test —T_—
DONE
== Insert BRANCH to
DONE
l 170
Insert if code
Insert if code 155 l
l Insert else code
Insert DONE ‘—_J
Insert DONE o

U.S. Patent

Nov. 24, 2015

Detect “if’
100

A

Insert
comparison
105

insert BRANCH to
if code for if
condition test
110

N

Insert BRANCH to
DONE
125

Sheet 1 of 7

Insert else code
120

y

Insert if code
130

Insert DONE
135

Figure 1A

US 9,195,460 B1

U.S. Patent

Nov. 24, 2015

Detect “if’
100

A

Insert
comparison
105

invert the if
condition test
140

Sheet 2 of 7

Insert BRANCH to
ELSE for the
inverted if
condition test
160

Insert BRANCH to
DONE for the
inverted if
condition test
150

Insert if code
165

!

A 4

Insert if code
155

Insert BRANCH to
DONE
170

A

insert DONE
180

Insert else code
175

Figure 1B

US 9,195,460 B1

U.S. Patent Nov. 24, 2015 Sheet 3 of 7 US 9,195,460 B1

Detect “if”
100

y

Insert if code for if
condition test
182

: Insert else code
Invert the if . .
. with inverted if
condition test -
186 condition test
— 188

Done
190

Figure 1C

U.S. Patent Nov. 24, 2015 Sheet 4 of 7 US 9,195,460 B1

Receive
condition test
200

TRUE
condition test?
215

NaN
condition test?
205

code = NaN?
225

Evaluate condition Condition test = Evaluate condition
test TRUE test
230 220 210

y

Condition test =
FALSE r » Done
235 240

Figure 2

U.S. Patent

Nov. 24, 2015

Sheet S of 7

US 9,195,460 B1

300

Output

Host Computer 310
Host Memory
312 Host System
- : <«—>» Processor [«—>»| Interface
D;|1v3er Cog’;ﬁller 314 315
1 f
Graphics 1
Subsystem .
- Graphics
370 Graphics Interface 317 Processor
1 305
A 4
Front End
330
-t IDX
> 335
Programmable
Local Memory > Graphics
Memory Controller Processing
340 320 < Pipeline
350
> Raster
Operations Unit
360
. | Output Controller
380

Figure 3

385

U.S. Patent Nov. 24, 2015 Sheet 6 of 7 US 9,195,460 B1

From
3358
Programmable
X Graphics
Primitive Assembly/Setup Processing
405 Pipeline
— 350
Raster Unit
410
Pixel Input Buffer Vertex Input Buffer
415 420
K X T X
>
Y y A 4 Y y y
Execution Execution Execution Execution
Pipeline Pipeline Pipeline Pipeline
440 440 440 440 Texture
Unit
l | { | a— 425
Texture
Cache
l 430
Vertex Output Buffer Pixel Output Buffer y
460 470
|
|
\ 4
v v
To From
To 360 To 360 320 320

Figure 4

U.S. Patent

To 245

From 425

From 415

From 420

Nov. 24, 2015

Sheet 7 of 7
From From
415 420

US 9,195,460 B1

Execution
Pipeline
440

Multithreaded
Processing Unit

o«
<

Figure 5

500
Thread Control Unit
520
Instruction .
. Instruction
Processing
» . Cache
Unit 530
510 =
Thread
State
Unit
525
A
4 *
PCU
575
v v
To 460 To 470

US 9,195,460 B1

1

USING CONDITION CODES IN THE
PRESENCE OF NON-NUMERIC VALUES

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present invention generally relate to
condition codes for and, more specifically, to the use and
evaluation of condition tests for non-numeric values.

2. Description of the Related Art

Conventionally condition codes are used in computer pro-
grams to store the result of numeric comparisons for later use
in determining control flow, in particular to determine which
additional computations to perform. Two bits are used to
represent three condition codes values indicating whether the
comparison output value is positive, zero, or negative. Eight
condition tests may be evaluated for a condition code value to
produce a true or false result. Six of the eight condition tests
are less than (LT), equal (EQ), greater than (GT), less than or
equal (LE), greater than or equal (GE), and not equal (NE)
representing all relationships between a condition code value
and zero. The other two condition tests are always (TR) and
never (FL).

The IEEE (Institute of Electronics and Electrical Engi-
neers) has defined a particular format for representing float-
ing point numbers with non-numeric values, not a number
(NaN). A NaN does not have an order relative to numeric
values, and therefore, can yield unexpected results when used
to produce a condition code value or as the input for a condi-
tion test. Seven of the eight condition tests evaluate to FALSE
when a NaN is present, and the remaining test, the TR test
evaluates to TRUE. Because of this, the negation of an
ordered test does not result in a negated result when a NaN is
present, i.e., GT and LE both evaluate to FALSE.

When an “if” statement is compiled the program code used
to represent the “if” statement may use condition codes and a
negated condition test. For example, the “if” statement “if
A>B, then x=0" may be represented by the code sequence
shown in TABLE 1.

TABLE 1

COMP cc, A, B
BRANCH cc.LE, DONE
X=0

DONE:

COMP sets the condition code, cc to the result of a compari-
son between A and B. Specifically when A is greater than B
cc=positive, when A is equal to B cc=zero, and when A is less
than B cc=negative. It is possible to use an addition or a
subtraction operation to produce the condition code. Rather
than using the GT test, the LE test is used to “jump over” the
x=0 code that should be executed when A>B is true.

Unfortunately, when either A or B is a NaN, the condition
code value cannot be reliably determined since different pro-
cessors may produce different condition code values for a
NaN. Therefore, x=0 may be executed when either A or B is
a NaN even though the desired result is execute x=0 only
when A>B.

Accordingly, there is a desire to use condition codes when
non-numeric values may be present and produce determinis-
tic results.

SUMMARY OF THE INVENTION

The current invention involves new systems and methods
for compiling programs using condition code value and con-

10

40

45

65

2

dition tests and executing those programs when non-numeric
(NaN) values are present. In addition to the conventional
condition code values a fourth value may be encoded, repre-
senting a NaN. New condition tests are defined that explicitly
account for NaN values. A compiler may generate code using
the new condition tests to represent if and if-else statements.
The code including the new condition tests will produce
deterministic results during execution when NaN values are
present.

Various embodiments of a method of the invention for
generating a sequence of commands for explicit handling of
non-numeric values include detecting an if statement includ-
ing an if condition test and if code for execution when the if
condition test is true, inserting a first comparison operation
command to produce a condition code value in the sequence
of commands, selecting a condition test from a set of condi-
tion tests based on the if condition test, wherein the set of
condition tests includes condition tests that explicitly handle
non-numeric values, and inserting a second command includ-
ing the condition test and the condition code value.

Various embodiments of a method of the invention for
executing commands when non-numeric values are present
include receiving a command including a condition test and a
condition code value, wherein the condition code value is one
ofpositive, negative, zero and not a number (NaN), determin-
ing that the condition test specifies a true or false result when
the condition code value is NaN, and evaluating the condition
test based on the condition code value to produce the true or
false result.

Various embodiments of the invention include an instruc-
tion processing unit for processing commands with explicit
handling of non-numeric values. The instruction processing
unit is configured to compute a condition code value that is
one of positive, negative, zero, and not a number (NaN) and
evaluate a condition test based on the condition code value to
produce a true or false result.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1A illustrates a flow diagram of an exemplary method
of compiling if-then statements for non-numeric values in
accordance with one or more aspects of the present invention.

FIG. 1B illustrates a flow diagram of another exemplary
method of compiling if-then statements for non-numeric val-
ues in accordance with one or more aspects of the present
invention.

FIG. 1C illustrates a flow diagram of an exemplary method
of compiling if-then statements for non-numeric values using
predicated commands in accordance with one or more aspects
of the present invention.

FIG. 2 illustrates a flow diagram of an exemplary method
of'executing code compiled with explicit unordered condition
tests in accordance with one or more aspects of the present
invention.

FIG. 3 illustrates a computing system including a host
computer and a graphics subsystem in accordance with one or
more aspects of the present invention.

US 9,195,460 B1

3

FIG. 4 illustrates the programmable graphics processing
pipeline of FIG. 3 in accordance with one or more aspects of
the present invention.

FIG. 5 illustrates the execution pipeline of FIG. 4 in accor-
dance with one or more aspects of the present invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough understanding of the
present invention. However, it will be apparent to one of skill
in the art that the present invention may be practiced without
one or more of these specific details. In other instances, well-
known features have not been described in order to avoid
obscuring the present invention.

The current invention involves encoding a fourth value in
addition to the conventional condition code values. The
fourth value represents an unordered output value when one
or both of the inputs to a comparison is a non-numeric value.
New condition tests are defined that explicitly account for
non-numeric values. A compiler may generate code using the
new condition tests to represent if and if-else statements. The
code including the new condition tests will generate deter-
ministic results during execution when non-numeric values
are present. In contrast, when the conventional condition tests
are applied to condition codes values in the presence of non-
numeric values, the output result may vary, producing undes-
ired effects.

FIG. 1A illustrates a flow diagram of an exemplary method
of compiling if-then statements for non-numeric values in
accordance with one or more aspects of the present invention.
In step 100 an “if” statement is detected by a compiler. In step
105 the compiler inserts a comparison operation representing
the “if” statement condition. When compiling “if A>B X=0"
the compiler inserts “COMP cc, A, B” to write the condition
code, cc, with the result of A-B. An exemplary code sequence
produced by the compiler for “if A>B X=0" is shown in
TABLE 2.

In step 110 the compiler inserts a branch command to
branch to the if code, i.e., command(s) immediately following
the if statement, when the if condition is true. For example,
the compiler inserts “BRANCH cc.GT AGTB,” where AGTB
is the command X=0. Note that when either A or B is a NaN,
the branch to AGTB will not be taken. In step 115 the com-
piler determines if an “else” statement is paired with the “if”
statement, and, if not, the compiler proceeds to step 125. In
step 125 the compiler inserts a second branch command, e.g.,
“BRANCH c¢c.TR DONE,” to branch over the if code
(AGTB, in the example) in order to not execute the if code
when the if condition is false. Using a condition test of LE
(less than or equal to) instead of TR (true) for the second
branch may result in a condition code with a NaN value
incorrectly executing the if code. When the if condition is not
true or is NaN, the if code should not be executed. The second
branch command using a condition test of TR ensures that the
code will produce the desired result. In order to produce a
proper result when a NaN value is present, the second
BRANCH is used in the code sequence shown in TABLE 2. In
contrast, the code sequence shown in TABLE 1 does not
include the second BRANCH and does not produce the
proper result when a NaN value is present.

In step 130 the compiler inserts the if code, e.g., X=0.
Although only one command is shown in the example, the if
code may include more than one command and each com-
mand is inserted in the code. In step 135 the compiler inserts
the second branch destination, DONE.

15

20

25

35

40

45

4
TABLE 2

COMP cc, A, B
BRANCH cc.GT AGTB
BRANCH cc.TR DONE
AGTB: X=0

DONE:

If, in step 115 the compiler determines that an “else” state-
ment is paired with the “if” statement, then in step 120 the
compiler inserts the else code, i.e., command(s) immediately
following the “else” statement that should be executed when
the if condition is false, before continuing to step 125. An
exemplary code sequence produced by the compiler for “if
A>B X=0; else result=X;” is shown in TABLE 3.

TABLE 3

COMP cc, A, B
BRANCH cc.GT AGTB
result =X

BRANCH cc.TR DONE
AGTB: X=0

DONE:

Although, the code generated by the compiler using the
method shown in FIG. 1A produces deterministic results for
NaN values, more efficient code may be generated using
explicit NaN condition tests. In particular, the execution of
each branch command may increase the execution time in a
multi-threaded processor since a first group of threads that
don’t execute the branch may be idle while a second group of
threads that do execute the branch are processed. Addition-
ally, for an if-else pair, the first group of threads are processed
while the second group of threads are idle, potentially reduc-
ing the processing throughput by half. Therefore, reducing
the number of branch commands may improve processing
throughput when the generated code is executed by a multi-
threaded processor.

FIG. 1B illustrates a flow diagram of another exemplary
method of compiling if-then statements for non-numeric val-
ues in accordance with one or more aspects of the present
invention. The method shown in FIG. 1B produces fewer
branch commands than the method shown FIG. 1A, while still
producing code sequences that yield deterministic results in
the presence of non-numeric values. Specifically, the method
shown in FIG. 1B produces the code sequences shown in
TABLES 5 and 6, corresponding to the code sequences shown
in TABLES 2 and 3, respectively.

Steps 100 and 105 are performed as previously described in
conjunction with FIG. 1A. In step 140 the compiler inverts the
if condition test to produce an inverted condition test. TABLE
4 shows the inverted condition test that corresponds to each
test representing an if condition.

TABLE 4
If condition Inverted
test condition test
GT LEU
LT GEU
LE GTU
GE LTU
EQ NEU
NE EQU
LEG U
U LEG
LTU GE
EQU NE

US 9,195,460 B1

TABLE 4-continued
If condition Inverted
test condition test
LEU GT
GTU LE
NEU EQ
GEU LT

Six of the condition tests, e.g., GT, LT, GE, LE, EQ, and
NE, are the conventional condition tests. Eight new condition
tests, e.g., LEG, U, LTU, EQU, LEU, GTU, NEU, and GEU,
provide for explicit handling of NaN values. LEG (less than,
equal, or greater than) is only true when the condition code
value is zero, positive, or negative, i.e., ordered. U (unor-
dered) is only true when the condition code value is unor-
dered, i.e., NaN. LTU (less than zero or unordered) is true
when the condition code value is negative or NaN. EQU
(equal to zero or unordered) is only true when the condition
code value is zero or NaN. LEU (less than or equal to zero or
unordered) is only true when the condition code value is
negative, zero, or NaN. GTU (greater than zero or unordered)
is only true when the condition code value is positive or NaN.
NEU (not equal to zero or unordered) is only true when the
condition code value is positive, negative, or NaN. GEU
(greater than or equal to zero or unordered) is only true when
the condition code value is positive, zero, or NaN.

In step 145 the compiler determines if an “else” statement
is paired with the “if” statement, and, if not, the compiler
proceeds to step 150. In step 150 the compiler inserts a branch
command, e.g., “BRANCH inverted condition test DONE,”
to branch over the if code in order to not execute the if code
when the if condition is false. In step 155 the compiler inserts
the if code, e.g., X=0. Although only one command is shown
in the example, the if code may include more than one com-
mand and each command is inserted in the code. In step 180
the compiler inserts the branch destination, DONE.

An exemplary code sequence produced by the compiler for
“if A>B X=0" is shown in TABLE 5. When the if condition
testis GT, corresponding to the A>B comparison, the inverted
condition test is LEU. Therefore, the branch will be taken
when A<B or when either A or B is a NaN and the if code will
not be executed. The branch command ensures that the code
will produce the desired result when a non-numeric value is
present.

TABLE §

COMP cc, A, B
BRANCH cc.LEU DONE
X=0

DONE:

The code shown in TABLE 5 has one less branch command
compared with the code shown in TABLE 2, and therefore,
may result in improved processing throughput when executed
by a multi-threaded processor.

If, in step 145 the compiler determines that an “else” state-
ment is paired with the “if” statement, then in step 160 the
compiler inserts a branch command, e.g., “BRANCH
inverted condition test ELSE,” to branch to the else code in
order to not execute the if code. In step 165 the compiler
inserts the if code, e.g., X=0. In step 170 the compiler inserts
a second branch command, e.g., “BRANCH cc. TR DONE;”
to branch to the end of the code sequence, jumping over the
else code. In step 170 the compiler inserts the else code, i.e.,
command(s) immediately following the “else” statement,

10

15

25

30

35

40

45

50

55

60

65

6

that should be executed when the if condition is false, before
continuing to step 180. An exemplary code sequence pro-
duced by the compiler for “if A>B X=0; else result=X;" is
shown in TABLE 6.

TABLE 6

COMP cc, A, B
BRANCH cc.LEU ELSE
X=0

BRANCH cc.TR DONE
ELSE: result=X

DONE:

When the compiler generates code using explicit condition
tests, such as the code shown in TABLES 5 and 6, fewer
branch commands may be needed to produce deterministic
results in the presence of non-numeric values compared with
using conventional condition tests as shown in TABLES 2 and
3, respectively.

In some embodiments of the present invention, a condition
test may be used in a predicated command. A predicated
command combines the condition test of an if statement into
the command, rather than using a branch command. For
example, MUL C(cc.GT), D, E computes C as the produce of
D and E when the condition code value is true for the condi-
tion test GT. An exemplary code sequence produced by the
compiler using the new condition tests (that explicitly handle
NaNs) and predicated commands for “if A>B C=D*E; else
C=F+G;” is shown in TABLE 7.

TABLE 7
COMP cc, A, B

MUL C(ce.GT) D, E
ADD C(ce.LEU) F,G

When the condition code value is NaN, the multiply com-
mand (MUL) will not be executed and the addition command
(ADD) will be executed. When the new condition test, LEU,
is replaced with a conventional condition test, LE, neither the
multiple nor the addition command are executed when the
condition code value is NaN and C remaining undefined,
producing an undesirable result.

FIG. 1C illustrates a flow diagram of an exemplary method
of compiling if-then statements for non-numeric values using
predicated commands in accordance with one or more aspects
of the present invention. In step 100 an “if” statement is
detected by a compiler. In step 105 the compiler inserts a
comparison operation representing the “if”” statement condi-
tion. In step 182 the compiler inserts the if code as a predi-
cated command based on the test corresponding to the if
condition. In step 184 the compiler determines if an “else”
statement is paired with the “if” statement, and, if not, the
compiler proceeds to step 190 and the command sequence is
complete. If; in step 184 the compiler determines if an “else”
statement is paired with the “if” statement, then in step 186
the compiler inverts the if condition test to produce an
inverted condition test. In step 188 the compiler inserts the
else code as a predicated command based on the inverted
condition test in order to execute the else code when the if
condition is false. Using predicated commands with the new
condition tests eliminates the generation of branches for if
and if-else statements, thereby improving command process-
ing throughput.

FIG. 2 illustrates a flow diagram of an exemplary method
of'executing code compiled with explicit unordered condition
tests, in accordance with one or more aspects of the present

US 9,195,460 B1

7

invention. The method shown in FIG. 2 may be used to
execute the code shown in TABLES 1, 2,3, 5, 6, or 7. In step
200 an instruction processing unit receives a command with a
condition test, such as a branch command or predicated com-
mand. As previously described, a condition code is written
based ona comparison between two values. The same instruc-
tion processing unit may execute a command to write the
condition code indicating the comparison result as positive,
negative, zero, or NaN.

In step 205 the instruction processing unit determines if the
condition test explicitly handles NaN condition code values,
and, if so, in step 210 the instruction processing unit evaluates
the condition test. NaN condition tests include GTU, GEU,
LEU, LTU, LEG, U, EQU, and NEU. If, in step 205, the
instruction processing unit determines that the condition test
does not explicitly handle NaN condition codes, i.c., the
condition testis a conventional condition test, then in step 215
the instruction processing unit determines if the condition test
is TR. If, in step 215 the instruction processing unit deter-
mines that the condition test is TR, then in step 220 the test is
evaluated to produce a result of true. Otherwise, in step 225
the instruction processing unit determines if the condition
code value is NaN, and, if so, in step 235 the test is evaluated
to produce a result of false.

If, in step 225 the instruction processing unit determines
that the condition code value is not NaN, then in step 230 the
test is evaluated to produce a result of true or false based on
the condition code value of positive, negative, or zero. In step
240 execution of the condition test is complete and the
instruction processing unit may proceed with execution of the
command including the condition test. Persons skilled in the
art will appreciate that any system configured to perform the
method steps of FIG. 1A, 1B, 1C, or 2, or their equivalents, is
within the scope of the present invention.

FIG. 3 illustrates a computing system generally designated
300 including a host computer 310 and a graphics subsystem
370 in accordance with one or more aspects of the present
invention. Computing system 300 may be a desktop com-
puter, server, laptop computer, personal digital assistant
(PDA), palm-sized computer, tablet computer, game console,
cellular telephone, computer based simulator, or the like.
Host computer 310 includes host processor 314 that may
include a system memory controller to interface directly to
host memory 312 or may communicate with host memory
312 through a system interface 315. System interface 315
may be an I/O (input/output) interface or a bridge device
including the system memory controller to interface directly
to host memory 312. Examples of system interface 315
known in the art include Intel® Northbridge.

A compiler 311 compiles programs to generate commands
for execution by graphics subsystem 370. Compiler 311 may
determine if predicated commands and/or NaN condition
tests are supported by graphics subsystem 370 and generate
branch or predicated commands using NaN condition tests to
improve processing throughput when the code is executed.
Although graphic subsystem 370 is a specialized processing
system for graphics data, compiler 311 may be configured to
generate commands for execution on other types of special-
ized processors or for host processor 314.

A graphics device driver, driver 313, interfaces between
processes executed by host processor 314, such as application
programs, and a programmable graphics processor 305,
translating program commands produced by compiler 311 as
needed for execution by graphics processor 305. Driver 313
also uses commands to configure sub-units within graphics
processor 305.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Host computer 310 communicates with graphics sub-
system 370 via system interface 315 and a graphics interface
317 within a graphics processor 305. Data received at graph-
ics interface 317 can be passed to a front end 330 or written to
a local memory 340 through memory controller 320. Graph-
ics processor 305 uses graphics memory to store graphics
data and program commands, where graphics data is any data
that is input to or output from components within the graphics
processor. Graphics memory can include portions of host
memory 312, local memory 340, register files coupled to the
components within graphics processor 305, and the like.

Graphics processor 305 includes, among other compo-
nents, front end 330 that receives commands from host com-
puter 310 via graphics interface 317. Front end 330 interprets
and formats the commands and outputs the formatted com-
mands and data to an IDX (Index Processor) 335. Some of the
formatted commands are used by programmable graphics
processing pipeline 350 to initiate processing of data by pro-
viding the location of program commands or graphics data
stored in memory. IDX 335, programmable graphics process-
ing pipeline 350 and a raster operations unit 360 each include
an interface to memory controller 320 through which pro-
gram commands and data can be read from memory, e.g., any
combination of local memory 340 and host memory 312.

1DX 335 optionally reads processed data, e.g., data written
by raster operations unit 360, from memory and outputs the
data, processed data and formatted commands to program-
mable graphics processing pipeline 350. Programmable
graphics processing pipeline 350 and raster operations unit
360 cach contain one or more programmable processing units
to perform a variety of specialized functions. Some of these
functions are table lookup, scalar and vector addition, multi-
plication, division, coordinate-system mapping, calculation
of vector normals, tessellation, calculation of derivatives,
interpolation, and the like. Programmable graphics process-
ing pipeline 350 and raster operations unit 360 are each
optionally configured such that data processing operations
are performed in multiple passes through those units or in
multiple passes within programmable graphics processing
pipeline 350. Programmable graphics processing pipeline
350 and raster operations unit 360 also each include a write
interface to memory controller 320 through which data can be
written to memory.

In a typical implementation, programmable graphics pro-
cessing pipeline 350 performs geometry computations, ras-
terization, and pixel computations. Therefore, programmable
graphics processing pipeline 350 is programmed to operate
on surface, primitive, vertex, fragment, pixel, sample or any
other data. For simplicity, the remainder of this description
will use the term “samples” to refer to graphics data such as
surfaces, primitives, vertices, pixels, fragments, or the like.

Samples output by programmable graphics processing
pipeline 350 are passed to raster operations unit 360, which
optionally performs near and far plane clipping and raster
operations, such as stencil, z test, and the like, and saves the
results or the samples output by programmable graphics pro-
cessing pipeline 350 in local memory 340. When the data
received by graphics subsystem 370 has been completely
processed by graphics processor 305, an output 385 of graph-
ics subsystem 370 is provided using an output controller 380.
Output controller 380 is optionally configured to deliver data
to a display device, network, electronic control system, other
computing system 300, other graphics subsystem 370, or the
like. Alternatively, data is output to a film recording device or
written to a peripheral device, e.g., disk drive, tape, compact
disk, or the like.

US 9,195,460 B1

9

FIG. 4 illustrates programmable graphics processing pipe-
line 350 of FIG. 3 in accordance with one or more aspects of
the present invention. At least one set of samples is output by
IDX 335 and received by programmable graphics processing
pipeline 350 and the at least one set of samples is processed
according to at least one program, the at least one program
including graphics program commands. A program can pro-
cess one or more sets of samples. Conversely, a set of samples
can be processed by a sequence of one or more programs.

Samples, such as surfaces, primitives, or the like, are
received from IDX 335 by programmable graphics process-
ing pipeline 350 and stored in a vertex input buffer 420
including a register file, FIFO (first in first out), cache, or the
like (not shown). The samples are broadcast to execution
pipelines 440, four of which are shown in FIG. 4. Each execu-
tion pipeline 440 includes at least one multi-threaded pro-
cessing unit, to be described further herein. The samples
output by vertex input bufter 420 can be processed by any one
of the execution pipelines 440. A sample is accepted by an
execution pipeline 440 when a processing thread within the
execution pipeline 440 is available to process the sample.
Each execution pipeline 440 signals to vertex input buffer 420
when a sample can be accepted or when a sample cannot be
accepted. In one embodiment of the present invention, pro-
grammable graphics processing pipeline 350 includes a
single execution pipeline 440 containing one multi-threaded
processing unit. In other embodiments of the present inven-
tion, programmable graphics processing pipeline 350
includes a plurality of execution pipelines 440.

Execution pipelines 440 may receive first samples, such as
higher-order surface data, and tessellate the first samples to
generate second samples, such as vertices. Execution pipe-
lines 440 may be configured to transform the second samples
from an object-based coordinate representation (object
space) to an alternatively based coordinate system such as
world space or normalized device coordinates (NDC) space.
Each execution pipeline 440 may communicate with texture
unit 425 using a read interface (not shown in FIG. 4) to read
program commands, spilled stack data, and graphics data
such as texture maps from local memory 340 or host memory
312 via memory controller 320 and a texture cache 430.
Texture cache 430 is used to improve memory read perfor-
mance by reducing read latency. In one embodiment of the
present invention, texture cache 430 is omitted. In another
embodiment of the present invention, a texture unit 425 is
included in each execution pipeline 440. Alternatively, each
execution pipeline 440 has a dedicated command read inter-
face to read program commands from local memory 340 or
host memory 312 via memory controller 320.

Execution pipelines 440 output processed samples, such as
vertices, that are stored in a vertex output buffer 460 including
aregister file, FIFO, cache, or the like (not shown). Processed
vertices output by vertex output buffer 460 are received by a
primitive assembly/setup unit 405. Primitive assembly/setup
unit 405 calculates parameters, such as deltas and slopes, to
rasterize the processed vertices and outputs parameters and
samples, such as vertices, to a raster unit 410. Raster unit 410
performs scan conversion on samples, such as vertices, and
outputs samples, such as fragments, to a pixel input buffer
415. Alternatively, raster unit 410 resamples processed verti-
ces and outputs additional vertices to pixel input buffer 415.

Pixel input buffer 415 outputs the samples to each execu-
tion pipeline 440. Samples, such as pixels and fragments,
output by pixel input buffer 415 are each processed by only
one of the execution pipelines 440. Pixel input buffer 415
determines which one of the execution pipelines 440 to output
each sample to depending on an output pixel position, e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

10

(x,y), associated with each sample. In this manner, each
sample is output to the execution pipeline 440 designated to
process samples associated with the output pixel position. In
an alternate embodiment of the present invention, each
sample output by pixel input buffer 415 is processed by one of
any available execution pipelines 440.

Each execution pipeline 440 signals to pixel input buffer
415 when a sample can be accepted or when a sample cannot
be accepted. Program commands configure programmable
computation units (PCUs) within an execution pipeline 440 to
perform operations such as tessellation, perspective correc-
tion, texture mapping, shading, blending, and the like. Pro-
cessed samples are output from each execution pipeline 440
to a pixel output buffer 470. Pixel output buffer 470 optionally
stores the processed samples in a register file, FIFO, cache, or
the like (not shown). The processed samples are output from
pixel output buffer 470 to raster operations unit 360.

FIG. 5 illustrates execution pipeline 440 of FIG. 4, includ-
ing at least one multithreaded processing unit 500, in accor-
dance with one or more aspects of the present invention. An
execution pipeline 440 can contain a plurality of multi-
threaded processing units 500, with each multithreaded pro-
cessing unit 500 containing at least one PCU 575. PCUs 575
are configured using program commands read by a thread
control unit 520 via texture unit 425. Thread control unit 520
gathers source data specified by the program commands and
dispatches the source data and program commands to at least
one PCU 575. PCUs 575 perform computations specified by
the program commands and output data to at least one desti-
nation, e.g., pixel output bufter 360, vertex output butfer 460
and thread control unit 520.

One characteristic of the system disclosed in FIGS. 5, 4,
and 5 is that it may be configured to embody a SIMD (single
instruction multiple data) architecture, where a thread is
assigned to each sample processed in the one or more execu-
tion pipelines 440. Therefore, a single program may be used
to process several sets of samples. Thread control unit 520
receives samples or pointers to samples stored in pixel input
buffer 415 and vertex input buffer 420. Thread control unit
520 receives a pointer to a program, i.e., sequence of com-
mands generated by compiler 311, to process one or more of
the samples.

In one embodiment of the present invention, thread control
unit 520 assigns a thread (threadID) to each sample to be
processed. A thread includes a pointer to a program command
(program counter), such as the first command within the
program, thread state information, and storage resources for
storing intermediate data generated when processing the
sample. In other embodiments of the present invention, rather
than assigning a different threadID to each thread, thread
control unit 520 assigns a threadID to several threads that are
processed as a group. However, there are points in a program
(i.e., branches) where threads in a thread group are allowed to
“diverge” from one another so that one or more threads may
execute commands on their respective samples that do not
need to be executed by the other threads in the thread group.
Divergent threads in a thread group may be synchronized at
various points in the program to guarantee that some level of
synchronized processing may be achieved at those points.
Once all of the threads in the thread group are synchronized,
the threads resume execution in lock-step, i.e. each sample is
processed by the same sequence of commands in a SIMD
manner.

When operating in a synchronized mode, each thread being
processed by a particular multi-threaded processing unit 500
independently executes the same operations (or commands)
on its respective sample. This type of synchronized process-

US 9,195,460 B1

11

ing is advantageous because, among other things, it allows
groups of like samples to be processed simultaneously, which
increases graphics processing efficiency. As previously
described when branches are executed, command processing
throughput may decrease since some of the threads in the
thread group may diverge with a portion of the threads in the
thread group taking the branch while the remaining thread in
the thread group are idle. It is desirable to minimize the
number of branch commands to allow all of the threads to be
processed each clock cycle. The number of branches may be
minimized by using NaN condition tests and predicated com-
mands.

Instruction processing unit 510 uses the program counter
for each thread to read program commands from instruction
cache 530 to execute the thread. When a requested program
command is not available in instruction cache 530 it is read
(possibly along with other program commands stored in adja-
cent memory locations) from graphics memory via texture
unit 425. A base address, corresponding to the graphics
memory location where a first command in a program is
stored, may be used in conjunction with a program counter to
determine the location in graphics memory where a program
command corresponding to the program counter is stored. In
an alternate embodiment of the present invention, instruction
cache 530 can be shared between multithreaded processing
units 500 within execution pipeline 440. Using predicated
commands may improve the cache hit rate for instruction
cache 530 compared with using branch commands since
commands are executed in a linear sequence when predicated
commands are used.

Instruction processing unit 510 receives the program com-
mands from instruction cache 530 and executes branch com-
mands and condition tests included in predicated commands.
Instruction processing unit 510 evaluates comparisons to pro-
duce condition code values. Instruction processing unit 310
also evaluates the condition tests for predicated or branch
commands using a method such as the one described in con-
junction with FIG. 2. For execution of other commands (not
branch commands) source data is gathered and the program
command is output to one of the PCUs 575 for execution. The
source data may be read from pixel input bufter 415, vertex
input buffer 420, local memory 340, host memory 312, or the
like. Processed samples are output to a destination specified
by the command. The destination may be vertex output buffer
460, pixel output buffer 470, or registers within multithreaded
processing unit 500. Alternatively, the destination may also
include local memory 340, host memory 312, or the like.

In one embodiment, execution pipeline 440 may be con-
figured to simultaneously process twenty-four independent
thread groups. The different thread groups may be simulta-
neously processed in a MIMD (multiple instruction multiple
data) manner relative to each other since each thread group
may be processed by a different program or a different portion
of the same program. In one embodiment, each thread group
may include up to thirty-two threads. A particular multi-
threaded processing unit 500 within execution pipeline 440
may process one or more such thread groups.

Thread state information representing the current state of
each thread being executed is stored in a thread state unit 525.
Thread state unit 525 may be a register file, FIFO memory,
circular buffer, or the like. Thread state unit 525 is configured
to maintain an active mask and an active program counter for
each of the thread groups processed by multithreaded pro-
cessing unit 500. The active mask is a string of bits that
indicates which threads in the thread group are currently
active (i.e., currently executing commands). Each bit in the
active mask corresponds to one thread in the thread group.

10

15

20

25

30

35

40

45

50

55

60

65

12

When a branch command is executed the bits in the active
mask are updated based on which threads are executing the
branch and which threads are not executing the branch. In one
embodiment, a bit is set if its corresponding thread is active.
Thus, when all bits in the active mask are set, multithreaded
processing unit 500 is operating in fully synchronized mode
for execution of the thread group associated with the active
mask. The active program counter indicates the address of the
command in the program currently being executed by the
active threads.
As the multithreaded processing unit processes commands
in the program, it may encounter one or more branch com-
mands. When a branch command is encountered, instruction
processing unit 510 may push thread execution data onto a
stack (not shown) that includes the current program counter.
The thread execution data may also include state information
related to various threads in the thread group, such as an active
mask. After pushing the thread execution data onto the stack,
instruction processing unit 510 may disable certain threads in
the thread group, while keeping the other threads active. The
active threads then execute the commands associated with the
branch.
Minimizing branch commands by compiling a program
using the new condition tests that explicitly account for NaN
values and using predicated commands reduces the overhead
for processing branch commands, i.e., saving and restoring
thread state as threads within a group are disabled or enabled.
The current invention involves new systems and methods for
compiling programs using the condition codes with NaN
values and NaN condition tests and executing those pro-
grams. The compiled programs including the NaN condition
tests will generate deterministic results during execution
when non-numeric values are present.
While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow. The foregoing description and drawings
are, accordingly, to be regarded in an illustrative rather than a
restrictive sense. The listing of steps in method claims do not
imply performing the steps in any particular order, unless
explicitly stated in the claim.
All trademarks are the respective property of their owners.
The invention claimed is:
1. A computer-implemented method of generating a
sequence of commands for explicit handling of non-numeric
values, comprising:
detecting an if statement including an if condition test and
if code for execution when the if condition test is true;

inserting, in the sequence of commands, a first comparison
operation command that, when executed by a processing
unit, compares a first source operand and a second
source operand to produce a condition code value;

selecting a first condition test from a set of condition tests
based on the if condition test, wherein the set of condi-
tion tests includes at least one condition test that evalu-
ates to true when at least one of the first source operand
or the second source operand is not a number (NaN); and

inserting a predicated arithmetic/logic command after the
first comparison operation command, wherein the predi-
cated arithmetic/logic command includes an arithmetic/
logic operation, the first condition test, and the condition
code value and deterministically executes or refrains
from executing the arithmetic/logic operation based on
the at least one condition test.

2. The method of claim 1, wherein the condition code value
represents one of positive, negative, zero, and NaN.

US 9,195,460 B1

13

3. The method of claim 2, wherein the at least one condition
test comprises a LEG (less than, equal, or greater than) that
evaluates to true only when the condition code value is zero,
positive, or negative, U (unordered) that evaluates to true only
when the condition code value is NaN, LTU (less than zero or
unordered) that evaluates to true when the condition code
value is negative or NaN, EQU (equal to zero or unordered)
that evaluates to true only when the condition code value is
zero or NaN, LEU (less than or equal to zero or unordered)
that evaluates to true only when the condition code value is
negative, zero, or NaN, GTU (greater than zero or unordered)
that evaluates to true only the condition code value is positive
or NaN, NEU (not equal to zero or unordered) that evaluates
to true only when the condition code value is positive, nega-
tive, or NaN, or GEU (greater than or equal to zero or unor-
dered) that evaluates to true only when the condition code
value is positive, zero, or NaN.

4. The method of claim 1, further comprising detecting an
else statement including else code for execution when the if
condition test is not true.

5. The method of claim 4, further comprising:

determining an inverted if condition test that is evaluated as

true when the if condition test is evaluated as not true;
and

inserting a third command that is a predicated command

including the inverted if condition test and the else code.

6. The method of claim 1, wherein the first condition test
represents the inverted if condition test.

7. The computer-implemented method of claim 1, further
comprising:

detecting an else statement that is paired with the if state-

ment and that is associated with else code; and
configuring the branch command to target to the else code
in response to detecting the else statement.

8. The computer-implemented method of claim 1, further
comprising:

detecting that no else statement is paired with the if state-

ment; and

configuring the branch command to target the if code in

response to detecting that no else statement is paired
with the if statement.

9. The computer-implemented method of claim 1, wherein
the arithmetic/logic operation comprises a multiplication
operation.

10. The computer-implemented method of claim 1,
wherein the arithmetic/logic operation comprises an addition
operation.

11. A system for processing commands with explicit han-
dling of non-numeric values, comprising:

a memory storing a sequence of commands; and

aprocessor coupled to the memory, the processor compris-

ing an instruction processing unit configured to:

execute a first comparison operation command included
in the sequence of commands to compare a first
source operand and a second source operand and pro-
duce a condition code value, wherein the first com-
parison operation is associated with an if condition
test and if code for execution when the if condition
test is true; and

execute a predicated arithmetic/logic command, com-
prising an arithmetic/logic operation, included in the
sequence of commands after the first comparison
operation command to evaluate a first condition test
based on the condition code value, wherein the first
condition test is based on the first comparison opera-
tion, wherein the first condition test evaluates to true
when at least one of the first source operand or the

20

25

30

35

40

45

50

55

14

second source operand is not a number (NaN), and
wherein the predicated arithmetic/logic command
deterministically executes or refrains from executing
the arithmetic/logic operation based on the at least
one condition test.
12. The system of claim 11, wherein the at least one con-
dition test comprises a LEG (less than, equal, or greater than)
that evaluates to true only when the condition code value is
zero, positive, or negative, U (unordered) that evaluates to
true only when the condition code value is NaN, LTU (less
than zero or unordered) that evaluates to true when the con-
dition code value is negative or NaN, EQU (equal to zero or
unordered) that evaluates to true only when the condition
code value is zero or NaN, LEU (less than or equal to zero or
unordered) that evaluates to true only when the condition
code value is negative, zero, or NaN, GTU (greater than zero
or unordered) that evaluates to true only the condition code
value is positive or NaN, NEU (not equal to zero or unor-
dered) that evaluates to true only when the condition code
value is positive, negative, or NaN, or GEU (greater than or
equal to zero or unordered) that evaluates to true only when
the condition code value is positive, zero, or NaN.
13. The system of claim 12, wherein the instruction pro-
cessing unit is configured to execute a predicated command
including the condition code value, the condition test, and an
operation that is performed when the result is true.
14. The system of claim 12, wherein the instruction pro-
cessing unit is configured to execute a branch command
including a condition test and a destination that specifies a
next command when the result is true.
15. A non-transitory computer readable medium storing
instructions for causing a processor to generate commands
for explicit handling of non-numeric values by performing
the steps of:
detecting an if statement including an if condition test and
if code for execution when the if condition test is true;

inserting, in the sequence of commands, a first comparison
operation command that, when executed by the proces-
sor, compares a first source operand and a second source
operand to produce a condition code value;
selecting a first condition test from a set of condition tests
based on the if condition test, wherein the set of condi-
tion tests includes at least one condition test that evalu-
ates to true when at least one of the first source operand
or the second source operand is not a number (NaN); and

inserting a predicated arithmetic/logic command after the
first comparison operation command, wherein the predi-
cated arithmetic/logic command includes an arithmetic/
logic operation, the first condition test, and the condition
code value and deterministically executes or refrains
from executing the arithmetic/logic operation based on
the at least one condition test.

16. The computer readable medium of claim 15, wherein
the condition code value represents one of positive, negative,
zero, and NaN.

17. The computer readable medium of claim 16, wherein
the at least one condition test comprises a of LEG (less than,
equal, or greater than) that evaluates to true only when the
condition code value is zero, positive, or negative, U (unor-
dered) that evaluates to true only when the condition code
value is NaN, LTU (less than zero or unordered) that evaluates
to true when the condition code value is negative or NaN,
EQU (equal to zero or unordered) that evaluates to true only
when the condition code value is zero or NaN, LEU (less than
orequal to zero or unordered) that evaluates to true only when
the condition code value is negative, zero, or NaN, GTU
(greater than zero or unordered) that evaluates to true only the

US 9,195,460 B1
15

condition code value is positive or NaN, NEU (not equal to
zero or unordered) that evaluates to true only when the con-
dition code value is positive, negative, or NaN, or GEU
(greater than or equal to zero or unordered) that evaluates to
true only when the condition code value is positive, zero, or 5
NaN.

18. The computer readable medium of claim 15, wherein
the first condition test represents the inverted if condition test.

#* #* #* #* #*

16

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,195,460 B1 Page 1of1
APPLICATION NO. 1 11/415781

DATED : November 24, 2015

INVENTOR(S) : Robert Steven Glanville, John Erik Lindholm and Ming Y. Siu

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS:

Column 14, Line 57, Claim 17, please delete “of™.

Signed and Sealed this
Twenty-eighth Day of June, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

